Production of 13N Using D-3He Fusion Protons

John Weidner
G.L. Kulcinski, J.F. Santarius, R.P. Ashley, B. B. Cipiti
G.R. Piefer, R.F. Radel, S. Krupakar Murali

Fifth US-Japan Workshop
On IEC Fusion
October 9th & 10th, 2002
Agenda

- Experiment purpose
- Experimental setup
- Lessons learned
- Expected Results
- Summary
Experiment will create 13N from D-3He fusion protons

- Create 13N using 14.7 MeV protons from D-3He reaction via 16O (p,α) 13N
- Selected 13N because
 - Limited commercial production due to 10-minute half life
 - 13N PET scans should increase in response to Medicare/Medicaid coverage
 - Cross sections match proton energies
Oxygen cross section matches proton energy

Cross section data from IAEA cross section database for radioisotope production
Water target setup

Filter out $^{13}\text{NH}_3$ with ion exchange resin

1. Pump
2. Heat exchanger
3. Valve
Water containment apparatus

- First versions were Al
 - Model AI-M1
 - Model AI-M2
- Latest version stainless steel; Model SS-M1
- Radiator is 61 cm x 61 cm
- Tube wall thickness ~ 0.127 mm
- Protons lose ~ 2.2 MeV in stainless steel tube wall

Model AI-M1
D-\(^3\)He protons easily pass through tube wall

Proton Range in Stainless Steel

- Energy (MeV)
- Range (mm)
Al-M1 radiator during construction
AI-M1 radiator mounted in UW IEC chamber
AI-M1 radiator was sensitive to electron jets
13N can be extracted from a water target

- Assume point source of 10^8 p/s at 12.4 MeV, 2720 cm2 target and 15 minute run time
- Yield ~ 6 nCi 13N
- Capturing all protons would yield ~ 35 nCi
- Clinical 13N PET routine requires ~ 35 mCi
Summary

• Water target should yield ~ 6 nCi of 13N
• Radiator models Al-M1 & Al-M2 had several limitations
• Model SS-M1 stainless steel radiator under construction
• Need increased reaction rate to improve yield