Rapid Parametric Studies of Polywell Electron Injection

Devlin Baker Convergent Scientific, Inc

d.baker@convsci.com

Outline

- > Challenges for PIC Simulation of IEC / Polywell
- > CSI's SimCode Algorithm
 - > Dynamic Particle Sort (DSP)
 - > Fast particle-grid and particle-geometry intersection
 - > Load balanced movers
 - > Hybrid-grid field solvers
- > Cloud-based Batch Computing: "PlasmaCloud"
- > Polywell Electron Injection Study
 - > Setup
 - > Effect of angular velocity spread
 - > Lessons
- > Future Work

Challenges for PIC Simulation of IEC

> Small Signal/Noise ratio for well formation

> Resolving disparate time scales

> Field Solvers must handle complex geometry

> Particle mover must handle (complex) geometry intersection

Solutions for Efficient PIC Sim of IEC

- Very large particle counts
- Load-balanced and/or adaptive movers
- Partitioned/Octree geometry intersection
- Hybrid-FEM field solvers

GP-GPU Based "SimCode"

(suggestions for better name welcomed)

SimCode- Sorted Charge Deposit

 Deposit per bin (thread block) into shared memory

SimCode- Sorted Charge Deposit

2. Copy from shared to global array

Potential memory collision rate reduced from square of particle count to function of bin count.

SimCode Algorithm- Particle/Geometry Intersections

Particle bins -> Geometry bins

Calculate intersections with geometry per bin (block), flag collisions

SimCode Algorithm- Load Balanced Movers

Goal: Fast Memory Access

Use series of flattened component arrays in Texture Memory for field quantities.

 $\vec{E} \implies$ int ind = i + j*dx + k*dy*dx Ex[ind], Ey[ind], Ez[ind]

R Bx[ind], By[ind], Bz[ind]

Goal: Approximately equal load on each SIMD core

For sub-stepped movers, assign particles to thread block based on expected number of sub-steps (proportional to error between first and second order solution).

SimCode Algorithm- Hybrid Grid Field Solvers

Based on: Kafafy, R.; Wang, J., "A Hybrid Grid Immersed Finite Element Particle-in-Cell Algorithm for Modeling Spacecraft-Plasma Interactions," *Plasma Science, IEEE Transactions on*, vol.34, no.5, pp.2114,2124, Oct. 2006

SimCode Algorithm- Immersed Boundary Method

Cloud Computing: "PlasmaCloud" System

Polywell Electron Injection Study

Device radius: 32.5cm Coil radius: 22cm Coil minor radius: 6.25cm Emitter standoff: 45cm Tank: 100cm cube Emitter spot size: 0.5cm Coil current: 200,000 amp-turns Max on-axis B field: 0.57 T Injection potential: 25kV Injection Current: 0.8A

Polywell Electron Injection Study

Et/Eb varied from 0 to 1 among 20 instances

- 20 Concurrent instances
- 64x64x64 Simulation grid
- 40,800 Polygons
- Explicit integration mode (leapfrog)
- Particle sort, move, deposit and field interpolation on GPU, field solve on CPU.
- Boris mover
- Low frequency EM IBM solver (Darwin)
- Particle counts of ~1E6 to 5E7
- Mixed precision mode (float on GPU)
- Exit on equilibrium particle count (max it=8E5)

Electron Injection Study: Results

- Regional average potential
- Regional average density
- Loss rate (global)
- Geometry surface flux
- Field and mover integration error
- Fields, trace particles, density, current

17.5 GB of data.

20 Instances, 8E5 time steps each, with diagnostic output every 2,000 steps

F	HDFView 2.10	
<u>Eile Window T</u> ools <u>H</u> elp		
😫 🗂 🔌 🛍 🖄		
Recent Files		▼ Clea
• C 2e-007		
- C 2e-008	XYZ at /5e-008/Particles/ [Output.h5 in C:\Users\Devlin\Documents\GitHub\CSI Deve	elopment
20.000	Table Md	1
	Tanie HH	0 boost 3
40-000		0-Dased -
e 🖷 Geometry	0 1 2	pa
- 🖽 Flux	0.4999015 0.4997042 0.1038088	L
- 🗱 Indices	1 0.4992846 0.4999241 0.1041282	
Points	2 0.4995324 0.4995945 0.1053667	
- Grid	4 0.4997226 0.4993031 0.1051754	
- M py	5 0.4996911 0.4993379 0.1049665	
	6 0.4999505 0.4993111 0.1046878	
нш Ву	/ 0.4999505 0.4992460 0.1043829 0.4006728 0.4002805 0.1051421	
- 🗱 Bz	9 0.4990720 0.4992805 0.1051431	
— 🏙 Ex	10 0.4998734 0.4994038 0.1050655	
- 🇱 Ey	11 0.4997502 0.4993685 0.1051501	
- E7	12 0.4994857 0.4993778 0.1048770	
in chi	13 0.4997025 0.4999889 0.1038274	
Netter Phil	15 0.4996596 0.4991118 0.1049337	
- 📾 mo	16 0.4991323 0.4998556 0.1047964	
🛉 📹 Particles	17 0.4997973 0.4994821 0.1048161	
- 🗱 VXVYVZ	18 0.4992280 0.4998094 0.1042248	
XYZ	20 0.4991405 0.4997788 0.1041556	
- 6e-008	21 0.4997871 0.4997948 0.1054326	
70.009	22 0.4997101 0.4996144 0.1050145	
	23 0.4996831 0.4994641 0.1051589	
► 🛄 8e-008	25 0.4994295 0.4996013 0.1052957	
≻ 🛍 9e-008	26 0.4998210 0.4998550 0.1039955	
- 🗑 Diagnostics	27 0.4996789 0.4997518 0.1038439	
- 🕅 CountDiagnostic	28 0.4994088 0.4993411 0.1043596	
DensityDiagnostic	30 0.4996108 0.4997898 0.1057674	
- I ossDiagnostic	31 0.4995906 0.4999539 0.1052889	
RotantialDiagnostic	32 0.4996174 0.4997476 0.1052032	
- I rotentialDiagnostic	33 0.4995387 0.4994160 0.1040333	-
Polyline		
- 🖽 Indices	33 0.8249999 0.3642964 0.6731604	
Points	34 0.8249999 10.3642964 10.6731604	
YZ (8750224, 48)		
64-bit floating-point, 5005 x 3		

Electron Injection Study: Results

Et/Eb = 0.35 - 1.0 "Rejection" Mode

- In all cases, coil bombardment accounted for less than 1% of losses
- Pass-through mode has the best final density and well depth
- Fill mode has lowest losses initially, and achieves moderate well depth quickly
- Rejection mode is characterized by rapid losses through corner cusps of same side as injection source.

Et/Eb vs Well Depth (kV)

Electron Injection Study: Lessons

- Confirmation that spaced, circular (or elliptical) coil cross sections drastically reduce electron bombardment of coil containers.
- Divergent magnetic field lines and space charge will spread injected electron beams, reducing passthrough for even highly collimated beams.
- Overall well depth only a fraction of injection potential.
- Suggestion: Efficient startup sequence begins with Et/Eb ~ 0.15, transitioning to Et/Eb < 0.05 within 20µs.

Variable Spread Electron Injector

Magnetically shielded, differentially pumped hollow cathode source with variable focus electrode

Future Work

- MCC and ionization
- Surface emission/reactions
- External circuit modeling
- Genetic algorithm?

- GP-GPU "SimCode" software has been developed to simulate plasmas in complicated geometry.
- Cloud computing "PlasmaCloud" system allows concurrent deployment of arbitrarily many SimCode instances via EC2.
- Concurrent parametric sweep of a small range of electron injection parameters demonstrated.
- Highly collimated beams not ideal for initial well formation (in absence of scattering neutrals or ions).
- Variable spread electron source proposed.

Interested in using PlasmaCloud? Let us know.

d.baker@convsci.com

info@convsci.com

Extra Slides

Extra Slides- Non conformal coils

Oscillations in highly collimated beam

Et = 0

Et = 0.1

SimCode: Modular PIC System

Explicit Mode:

Implicit Mode:

GPU Data Details

Practical particle count limitation on K520 grid GPU: 5E8 Particles with 128x128x128

GPU memory overhead per particle

Particles	Total: 55 bytes	
float vx[], 4 bytes	-	
float vy[], 4 bytes	float fcopy[], 4 bytes	
float vz[], 4 bytes	int32 icopy[], 4 bytes	
float x[], 4 bytes	Only when	
float y[], 4 bytes		
float z[], 4 bytes	float x2[], 4 bytes	
uint16 s[], 2 bytes	float y2[], 4 bytes	
int32 binId[], 4 bytes	float z2[], 4 bytes	
bool exit[], 1 byte	float dtprev[], 4 bytes	

GPU memory overhead per node

GPU memory overhead per bin

int32 spatial[], 4 bytes

int32 start[], 4 bytes

int32 end[], 4 bytes

int32 gstart[], 4 bytes

int32 gend[], 4 bytes

- A few dozen bytes for species info, grid parameters etc.
- Geometry!

References

Plasma Physics via Computer Simulation (Series in Plasma Physics) (01 October 2004) by C. K. Birdsall, A. B. Langdon

Kafafy, R.; Wang, J., "A Hybrid Grid Immersed Finite Element Particle-in-Cell Algorithm for Modeling Spacecraft-Plasma Interactions," Plasma Science, IEEE Transactions on , vol.34, no.5, pp.2114,2124, Oct. 2006

Payne, J.E., 2012. Implementation and performance evaluation of a GPU particle-in-cell code. Cambridge, MA: Massachusetts Institute of Technology

G. Chen, L. Chacón, and D. C. Barnes. 2012. An efficient mixed-precision, hybrid CPU-GPU implementation of a nonlinearly implicit one-dimensional particle-in-cell algorithm. J. Comput. Phys. 231, 16 (June 2012), 5374-5388.

S. Markidis, G. Lapenta, The energy conserving particle-in-cell method, Journal of Computational Physics 230 (18) (2011) 7037-7052.

Lapenta, Giovanni and Markidis, Stefano, Particle acceleration and energy conservation in particle in cell simulations, Physics of Plasmas 18, 072101 (2011)