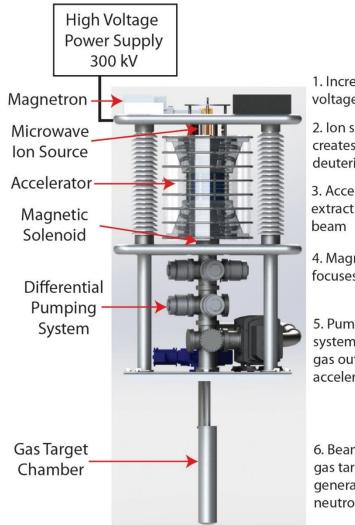


PROVIDING NUCLEAR TECHNOLOGY FOR THE BETTERMENT OF HUMANITY

PNL Neutron Generator

Ross Radel, PhD President, Phoenix Nuclear Labs

PNL Introduction


- > Development stage company founded in 2005 with ~30 employees
- > PNL has developed high yield, gas target neutron generator
- Measured neutron yield of 3x10¹¹ DD n/s
- Fundamental technology combines very high current DC ion source, high voltage electrostatic accelerator, and gaseous deuterium or tritium target
- Multiple fielded systems; several more being built in next year

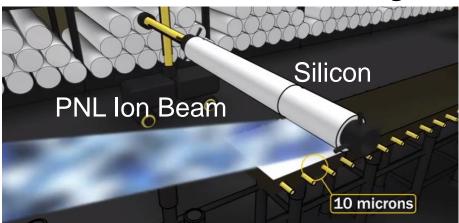
Neutron Source Overview

1. Increase primary voltage to 300 kV

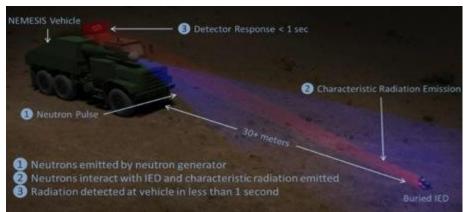
2. Ion source creates dense deuterium plasma

3. Accelerator extracts D+ ion

4. Magnetic field focuses ion beam


5. Pumping system keeps gas out of accelerator

6. Beam strikes gas target and generates neutrons



Applications

Semiconductor Processing

Explosives and SNM Detection

4

Neutron Radiography

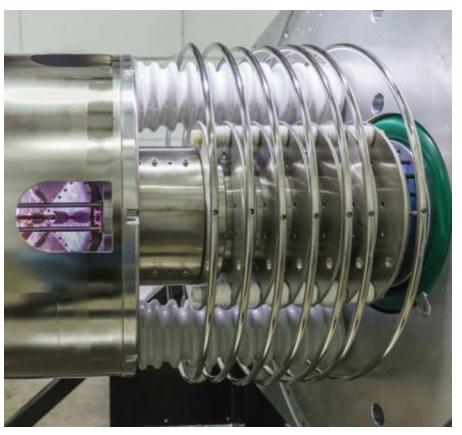
Medical Isotope Production

Generation 1: U.S. Army

Generation 2: SHINE Medical

Confidentiality statement: This document is the property of Phoenix Nuclear Labs and may not be copied, used, or disclosed for any reason except as authorized by PNL

Microwave Ion Source



- 2.45GHz microwaves generated by magnetron at ~1kW
- ECR process ionizes gas in plasma chamber
- Beam extraction at 30-60kV
- Current density 40-250 mA/cm²
- Measured 100mA of extracted D⁺ current (CW)
- Very long lifetime (years)
- > High atomic ion fraction (~90%)
- High gas efficiency (>25%)

Electrostatic Accelerator

≻ 300 kV

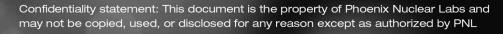
- Up to 100 mA of deuterium
- Custom lens stack for beam transport

□ Low emittance for gas target

- Both SF6 and dielectric oil have been used as non-vacuum insulator
- Multiple electron suppression elements (magnetic and electrostatic)

Confidentiality statement: This document is the property of Phoenix Nuclear Labs and may not be copied, used, or disclosed for any reason except as authorized by PNL

Focus Element


ESQ or Magnetic Solenoid

Electrostatic Quadrupole

- □ Low input power
- Includes beam steering
- □ Transports all ion species
- □ Struggles at ion current >25mA

Magnetic Solenoid

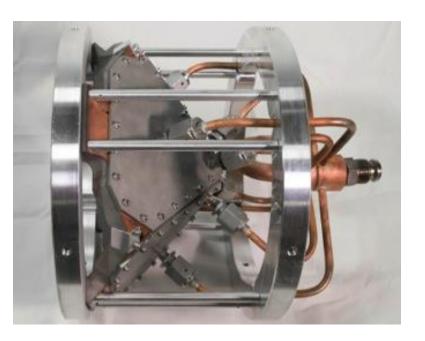
- □ High input power
- No beam steering
- Only transports single ion species
- □ Handles very high current (>100mA)

Differential Pumping

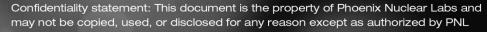


10

- Accelerator must be kept at low pressure (~uTorr) for voltage standoff and beam transport
- Target must be kept at high pressure for neutron generation (~Torr)
- Million-fold pressure differential achieved by series of pumps and apertures
- Turbopumps, roots blowers, gas jets, etc.


- > Cylindrical gas target approximately 1m in length and 15cm in diameter
- > Deuterium or tritium gas

11


- → High pressure (10 30 Torr) maintained by differential pumping
- > Neutron source is effectively a "line source"

Solid Target

- Lower yield, but smaller system
- Copper coated with titanium
 - □ Higher deuterium concentration
 - Excellent thermal properties
- Targets are self-loading and selfreplenishing
 - Proprietary, automated cleaning process for extremely long lifetime
- High beam current and voltage create unique cooling challenges

HV Power Supply

13

- > 300kV, 200mA DC HVPS
- Low stored energy (< 230J)</p>
- Fiber optic arc sensing and very fast automatic shutdown (<50us)

Control Cabinet

Summary and Next Steps

- PNL has developed high yield, gas and solid target neutron generator for several different applications
 - Isotope production
 - Neutron Radiography
 - > Explosives and SNM detection
- Measured neutron yield of 3x10¹¹ DD n/s
- Future development efforts underway
 - Increase voltage/current for higher yield (5x10¹¹ DD n/s)
 - > Further miniaturization of neutron generator
 - > Transition to tritium target (5x10¹³ DT n/s)

Thank You!

Ross Radel, PhD Phoenix Nuclear Labs

phoenixnuclearlabs.com ross.radel@phoenixnuclearlabs.com 608-210-3060