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Nuclear Terrorism Threats

3.14m

Conventional gun-type nuclear weapon:  
30 – 60 kg of 235U
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 passive detection is impossible unlike 239Pu

Pony Industry Co. Ltd.

Passive Gamma-ray detectors 
Effective to 239Pu
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Nuclear Terrorism Threats

3.14m

Conventional gun-type nuclear weapon:  
30 – 60 kg of 235U

Modern tactical nuclear weapon: 10 – 30 kg of 239Pu

 235U Hiroshima-type is more troublesome.  
 passive detection is impossible unlike 239Pu
 easy to make w/o test bans 
 assembling in the target nation is possible 
 identification by shape is not effective enough 

Transportation of tens kg of 235U – air cargo, land transportation, 
spy ship, sea container.
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Megaports Initiative (2007)
 Mandatory SNM screening of all US-bound containers at their 

port of origin from 2012.

400 containers / day from Yokohama 

Photo by Gunnar Ries
20ft container

8 ft x 8 ft x 20 ft
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Megaports Initiative (2007)
 Mandatory SNM screening of all US-bound containers at their 

port of origin from 2012.

 It has been delayed 2x2 years (until 2016), due to lack of SNM 
detection system. 

400 containers / day from Yokohama 

Photo by Gunnar Ries
20ft container

8 ft x 8 ft x 20 ft

 JPN gov. will setup 2-3 central seaports. 
 Our proposal is to built SNM screening facilities in those 

central seaports.

Very rapid (2 min/container) inspection system is required.
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Project Overview

1. Neutron-based system

2. X-ray image 

3. LCS γ-ray beam
for isotope identification
 10 min / point

6m

400 containers / day 4
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Project Overview

1. Neutron-based system

2. X-ray image 

3. LCS γ-ray beam
for isotope identification
 10 min / point

6m

400 containers / day

Scanning whole volume impossible.
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Project Overview

1. Neutron-based system

2. X-ray image 
for determination of 
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3. LCS γ-ray beam
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Pony Industry Co. Ltd.
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Project Overview

1. Neutron-based system
for rapid screening
 false alarm rate < 10%
 2 min. per container

2. X-ray image 
for determination of 
point(s) of interest

3. LCS γ-ray beam
for isotope identification
 10 min / point

6m

Proof-of-principle, 
reduced-scale prototype 
experiments,
& scale-up design

400 containers / day

40

360

 5-year R&D from FY2010
 R&D budget: 5.5M$
 Estimated cost: 26.5M$
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Neutron-Based Screening Facility

2 containers / 10 min
5 min for neutron-irradiation/detection, and
5 min for replacement of container trucks.

10 m

container truck

driver

IECs
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Neutron-Based Screening System

Poly-Roof

Poly-Wall

Fast 
Neutron 
Detectors

Thermal 
Neutron 
Detectors

DD IECs

Two container trucks are inspected simultaneously with
 Three pulsed DD-IECs (108 n/sec),
 450 3He detectors (1” dia., 1m length) or more BF3 detectors,
 54 NE213 detectors (5” dia., 4” length) or fewer TMFDs.

Pulsed HV Power Supplies 6



Kai Masuda et al. “Active Interrogation of SNMs by use of IEC Fusion Neutron Source, IEC2013, Oct. 6-9, 2013, Kyoto, Japan

Newly Developed Pulsed IEC

IEC
chamber

anode

cathode

3-stage HV 
feedthrough

DC PS switchescapacitor oil tank (7000L)

 All in one grounded tank          Low EM noise emission
 Dual 200 kV switches           Quick pulse fall-off
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Typical Pulse Shapes of V, I and NPR
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Experimental Pulsed Neutron Yield
 Experimental tests were carried out with two pulsed HV PSs.
 100kV-20A PS will be used for demo. because of transportation/ 

space limitations and oil/radiation regulations in KUCA facility 
where 235U can be used.
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Neutron-In Neutron-Out Detection of SNMs

HEU

incident
neutrons

delayed neutrons （<1%）

Easier approach, 
but much less signals.

cf. Delayed Neutron Analysis (DNA)

prompt neutrons （>99%）

Much more plentiful, 
but need to separate out from probing neutrons
cf. Differential Die-Away Analysis (DDAA)

t

delayed

prompt

probing neutrons

A principal challenge is to distinguish the secondary
neutrons from the probing neutrons.

Either DNA or DDAA requires very intense NGs (DT mandatory).

10



Kai Masuda et al. “Active Interrogation of SNMs by use of IEC Fusion Neutron Source, IEC2013, Oct. 6-9, 2013, Kyoto, Japan

Neutron-In Neutron-Out Detection of SNMs

HEU

incident
neutrons

delayed neutrons （<1%）

Easier approach, 
but much less signals.

cf. Delayed Neutron Analysis (DNA)

prompt neutrons （>99%）

Much more plentiful, 
but need to separate out from probing neutrons
cf. Differential Die-Away Analysis (DDAA)

t

delayed

prompt

probing neutrons

A principal challenge is to distinguish the secondary
neutrons from the probing neutrons.

New techniques are being developed.
1. Delayed Neutron Noise Analysis (DNNA)
2. Threshold Energy Neutron Analysis (TENA)

Either DNA or DDAA requires very intense NGs (DT mandatory).
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What is “Neutron Noise” ?
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“Neutron Noise” Contains Signature of 

Fission Chain Reactions 

Y(∞) = 0    random neutrons (Poisson distribution)
Y(∞) > 0    correlated neutrons
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Basic Neutron Noise Analysis (NNA)
 Well developed method in fission reactor physics field.
 Characterizes neutron multiplication factor due to fission 

chain reactions.
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Delayed Neutron Noise Analysis (DNNA)

n(
t)

time, t

w/ HEU
w/o HEU

incident neutron pulses from IECs

neutron count rate in detector
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Delayed Neutron Noise Analysis (DNNA)
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Delayed Neutron Noise Analysis (DNNA)
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Delayed Neutron Noise Analysis (DNNA)
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3He: 1”dia., 20cmL, 5atm

U-235：1.3 kg (keff = 0.12)

NPR (DT)：~105 n/sec

10 μsec, 10 Hz

ROI in DNNA: 50-100 msec

HEU

DNNA Experimental Setup in KUCA
p p p p p p p p
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p p
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p F F p

p p

p p

p p p p p

F

p
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T-Target

D-Beam

H Detector
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DNNA Experimental Results

 Clear difference in Y(t) was seen from BG w/o HEU.

w/  HEU

w/o HEU
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Threshold Energy Neutron Analysis (TENA)

A significant portion of the fission neutrons is above 
DD neutron energy.
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Threshold Energy Neutron Analysis (TENA)

A significant portion of the fission neutrons is above 
DD neutron energy.
Use of DD neutron source is mandatory. Neither DT 

nor RI source is applicable.
Either dc or pulsed source is applicable. 
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TENA Experimental Setup

Cf-252

150cm

150cm

DD-IEC

detector + shielding
(Pb, poly)

Cf-252

DD IEC (DC)

NE213 liquid scintillator
+ 5cm Pb  + 10cm Ploy 

DD IEC
0.1, 1.0, 2.0, 3.0x107 [n/sec]

Cf-252
2.9 x104 [n/sec]

X/γ-rays are rejected, making use 
of induced pulse shape difference.
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TENA Experimental Results

Clear difference between Green (signal + BG) and Black (BG 
only) is seen above 2.45 MeV.
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TENA Experimental Results

Clear difference between Green (signal + BG) and Black (BG 
only) is seen above 2.45 MeV.
BG counts above 2.45 MeV are seen due to X/γ-rays and pile-

up of less energetic neutrons.
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Y = (5.8E-06) X2 + (6.8E-04) X + (1.1E-02)

BG count rate below 2.45 MeV [cps]
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TENA Experimental Results (Contd.)

BG count rate above 2.45 MeV is seen to increase nonlinearly 
as increase of incident DD neutrons (and X-rays) from IEC. 
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Estimation of Required Detection Time

Poly-Roof

Poly-Wall

Fast 
Neutron 
Detectors

Thermal 
Neutron 
Detectors

DD IECs

Pulsed HV Power Supplies 

Two container trucks are inspected simultaneously with
 Three pulsed DD-IECs (108 n/sec),
 450 3He detectors (1” dia., 1m length), and
 54 NE213 detectors (5” dia., 4” length).

Estimation made based 
on the exp. results and 
MCNP6 simulations.
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Detection Time for 1kg HEU

Assumption:
Nothing in the container except for 1-kg HEU. 
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Tensioned Metastable Fluid Detector (TMFD)

Centrifugal TMFD Acoustic TMFD

 Blind to X/γ-rays.
 Blind to neutrons below a threshold energy.
 The threshold neutron energy variable.
 ~90% efficiency with 10cm x 10cm volume.
 Directional detection by ATMFD.

Developed by Prof. Taleyarkhan’ group in Purdue Univ. See for example, 
R.P. Taleyarkhan, et al., Nuclear Engineering and Design 238 (2008) 1820. 
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Concluding Summary & Plan

 Nondestructive screening as fast as 2 min/container is 
required in order not to block sea container distribution.

 Experiments have been made for the two neutron-
based methods, namely DNNA and TENA. 

 An inspection facility has been designed, which can 
handle two container trucks per 10 min, including 
mandatory 5 min for trucks replacement.

 5’x5’x5’-scale tests are planed Dec 2014 – Feb 2015 
by use of a single IEC, reduced number of detectors 
and U-235 (natural uranium). 

We also plan to test a novel fast neutron detector, 
TMFD, which is ideal for TENA because it is blind to 
X/γ-rays and neutrons below 2.45 MeV. 24


