16th US-Japan Workshop

Characterization of the discharge plasma in Cylindrical Inertial **Electrostatic Confinement Fusion device**

Tokyo Institute of Technology Hotta Lab Kazuki Nanjo*, Kouhei Kashiwagi, Toshihiro Sekiguchi, Wantapon Nghamdee, Masato Watanabe and Eiki Hotta

0. IEC DEVICE @ TOKYO TECH

Spherical IEC

Coaxial Double Cylindrical IEC

Cylindrical IEC

Cylindrical: Magnetic - assisted IEC

0. IEC DEVICE @ TOKYO TECH

Spherical IEC

Coaxial Double Cylindrical IEC

Cylindrical IEC

Cylindrical: Magnetic - assisted IEC

1. CYLINDRICAL IEC DEVICE

Cathode: ϕ 1.6-mm Stainless Steel Rod x16 Anode: ϕ 1.2-mm Stainless Steel Rod x32

The advantages of cylindrical device

- disturbance of electric field by the feedthrough is small
- the flux of neutron varies in inverse proportion to the distance

Maximum voltage: -70 kV

2. HOW TO INCREASE NPR?

Potential distribution in IEC device

3. AXIAL CUSP MAGNETIC FIELD

Paschen curve with cusp magnetic field

magnetic field \rightarrow ions produced \rightarrow Breakdown voltage decreased

NPR vs. Cathode Current with axial cusp magnetic field

Electron moves to axial direction by $E \times B$ drift

5. SPECTROSCOPY

6. SPECTRAL PROFILE

spectral profile of H_{β} line(measured in spherical device)

 Σ (Energy of neutral particle) \rightleftharpoons Energy of ion beam

The lens and optical fiber is covered with blackout curtain

Alignment of the spectroscopic system

Effect of the blackout curtain(2014/09/20)

Why?

7. DISCUSSION

Why the spectra can not be measured?

Wavelength resolution of the spectrometer: 2.2 Åm

 \rightarrow Peak around can not be measured...

but why spread around the center can not be measured?

My spectroscopic system

8. SUMMARY AND PLAN

Magnetic field : Suppose to increase neutron production rate **Spectroscopy**: To measure the spectra and energy distribution

