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Multiple-grid IEC — brief history

Sedwick et al. used additional grids to focus
ion beams and increase ion confinement time
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3 TAKEAWAYS:

lon lifetimes extended: From 10’s

of passes to 103-10° passes

Greater confinement time
+ Counter-stream instability
+ |EC trap kinematics

= lon bunching

Bunch synchronization —
Decreased thermalization
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Multiple-grid IEC — current research

DODECAHEDRAL GRIDS

12 Faces - 6 beamlines
e Highly symmetric

* Another possibility: Truncated
Icosahedron (Soccer Ball)

* Feed-throughs?

ION BUNCHING

e Potential well can be shaped to
encourage ion bunch cohesion

MAGNETIC CORE

* Confinement of electrons in the core
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Electric Potential (kV)

2-GRID IEC
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2-GRID IEC

Electric potential along beamline
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4-GRID IEC
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Electric Potential (kV)
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4-GRID IEC

Electric potential along beamline

ION CONFINEMENT
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Particle-particle Discrete Event Simulation

. C_ii - — 1 i q—éfu +i§
Inter-particle forces are calculated 4mey m; Ty m;
directly (N-body simulation)

— No need to solve Poisson’s equation at each
time step (At); = 0.5 ns @
q E ¥ &V
No global time-step, each particle is v, \ (At); = 0.5 ns
assigned its own time-step depending @
on its velocity and acceleration g, E A
— Coulomb collisions are modeled directly by 713 ’
decreasing the time-step values of colliding Queue
particles.
L
Static E&M fields are calculated .
once at the beginning of the (At)s = 2 ns 4 (D1 N
simulation @
- 3
q3E, ~

7’



05|

| Background | Particle-particle model | Hybrid PIC model | Conclusion |

2-GRID Particle-particle simulation

Grid size: 201-by-201-by-201
Elapsed simulation time: 0
Elapsed computation time: 00:00:00

LOW DENSITY BUNCH

IONS

Active: 2000
Hit grid: 0
Left domain: 0
Mean(At) = 0
Macroparticle weight = 3447709

Potential from ions

Total potential in xy
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2-GRID Particle-particle simulation

What happens if we increase the
density of the ion bunch?



2-GRID Particle-particle simulation
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Grid size: 201-by-201-by-201
Elapsed simulation time: 0
‘ Elapsed computation time: 00:00:03

| IONS
| | Active: 2000
| | Hitgrid: 0
| | Leftdomain: 0
| | Mean(at) =0
[ Macroparticle weight = 9193892
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HIGHER DENSITY BUNCH

lon density in xy-plane

Total potential in xy
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4-GRID Particle-particle simulation s#vebensiTy As PREvIOUs sLipe

Grid size: 201-by-201-by-201
Elapsed simulation time: 0
Elapsed computation time: 00:00:04

lon density in xy-plane

IONS
Active: 2000
Hit grid: 0
Left domain: 0
Mean(at) = 0
Macroparticle weight = 3678093

Potential from ions
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lon Bunching — The Kinematic Criterion

lons near the back of the bunch | KinematiC [ 1onsin the front of the bunch

are decelerated by the Coulomb . . . are accelerated by the Coulomb
repulsion from the bunch criterion: repulsion from the bunch

Energy decreases B dT > O Energy increases

Period must also decrease to dE ~— Period must also increase to
prevent ions from “running away” T: Period prevent ions from “running away”

E: lon Energy (KE+PE) T

-

IONS OF DIFFERENT
_ ENERGIES HAVE
DIFFERENT PERIODS

Multi-grid potential well

TRAILING LEADING
IONS IONS




lon Bunching — The
Kinematic Criterion

. . . dT
Kinematic criterion: T >0

dT .
But F can’t be too large either!

Conditions have to be just
right for ions to coalesce into

bunches

FUTURE WORK:

“Sculpting” the IEC well to
encourage bunch cohesion
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Potential well (kV)
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Electron confinement in the IEC core

Electric potential along beamline
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Electron confinement in the IEC core

2D Analogue @ s

Cathode grid ——— ° ° I
Outer anode grids
Inner anode grid > @ a

BEAMLINE

ANITNV3IE
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Electron confinement in the IEC core

O O |

Electron prevented from escaping I

Cathode grid —— ° along beamline by electric field °
Outer anode grids

Inner anode grid

v

Electron prevented hitting anode
grid by magnetic mirror
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Approximate E&M fields along a beampath

Electric Potential (V)

A
AN

Magnetic Field (T) Il
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Confinement ofa single electron
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Confinement of many electrons

Grid size: 201-by-201-by-201
Elapsed simulation time: 0
Elapsed computation time: 00:00:00

Electron density in xy-plane

ELECTRONS
Active: 2400
Hit grid: O

Left domain: 0

Mean(at) =0
Macroparticle weight = 383135

Potential from electrons

Total potential in xy
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Disadvantages of the particle-particle discrete
event simulation

 Computation time scales as N?

* Only suitable (at this point) for modeling one
species at a time (ions or electrons) for short

timescales

* To model both species at once we need a
hybrid PIC model
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Hybrid Particle-in-cell model

IONS - PARTICLES
ELECTRONS - FLUID

Assume electrons
reach a thermalized

steady-state at each
dne

Long-timescale
simulation requires

time-steps based

on the ion motion time-step (
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Hybrid Particle-in-cell model

Currently using the following governing equations:

Interested in steady-state solution

CONTINUITY % +V-(m,B) =S
- e .
VELOCITY X+ (B V)D = — (Vo + % x B)
e

e
POISSON’S ~ V?® =—(n, —n;)
€0

But first we’ll test the time-stepping solution
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Electron fluid model TEST PROBLEM (not IEC)
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Electron fluid model
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Simple 2D test problem:

Magnetic field created by current-carrying wires
Electron Source in Center
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Electron fluid model

Simple 2D test problem:

Magnetic field created by current-carrying wires
Electron Source in Center

Comparison with particle-in-cell model with same conditions
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Simple 2D test problem:

E I e Ct ron fl u id mo d e I * Magnetic field created by current-carrying wires

e Electron Source in Center

Comparison with particle-in-cell model with same conditions

Electron density i Electron density

t=190 ns t=190 ns

'.l

FLUID MODEL

0.1 02 03 0.4 05
x (m)

PIC MODEL
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Electron fluid model With increased B-field

Electron density Electron x-velocity
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The End

Grid size: 201-by-201-by-201
Elapsed simulation time: 0
Elapsed computation time: 00:00:22

IONS

Active: 12000
Hit grid: 0

Left domain: 0

Mean(At) =0 J
Macroparticle weight = 766269
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- 4 =9
DENSITY PR + P (nv)
v 0 e 0
VELOCITY ~— — 4 —(v?) = ——
dat T dx G mox
0% e
POTENTIAL —ZCD =—n
dx €o

Using the Roe scheme (basically a selective upwind scheme) for
density and velocity:

I — T4
Ui —uUj—q

liy1 — T
Uir1 — U

aui
dt

(Ui —Uu;) +

1
+ > Ax {(Fi+1_ri—1) —

Central differencing Upwind correcting terms



For STEADY STATE: can’t take the derivatives of absolute values:

aui 1
a3 + > Ax (Giy1—Ti-1) —

I — T4

Ui —uUj—q

Iit1— TG
Uiy — Y4

(Uiy1 —u; ) +

(u; —uj—q )} = 5;

Use approximation: |x| = Vx? + a? with small enough a

In our case, a is a velocity



