

Approach to Optimizing D-D Neutron Rates in a Linear **IEC Device**

M. Navarro, G. Kulcinski, J. Santarius, G. Becerra, A. McEvoy Fusion Technology Institute, University of Wisconsin-Madison

1 20E+06

Main Objective

Characterization the first linear IEC device at the University of Wisconsin-Madison.

D-D Fusion

Neutron rate per watt of fusion (from fuel only)	
Reaction	Neutrons/s (MeV)
D-T	$4 \times 10^{11} (14.1)$
D-D	9 × 10 ¹¹ (2.45)
D- ³ He	$2 \times 10^{10} (2.45)$

•New HV capabilities of the UW-IEC lab will permit exploring D-3He for the linear device.

allow for improved studies charge exchange of processes for these fuels.

reaction

10 Device symmetry will 10-3

•The D(D,n)³He

produces mid-energy neutrons.

Linear Device

•Inside the chamber, two anode-cathode pairs will oscillate the ions across a target region.

Optimization Parameters	
$L_{C-C}(m)$	Cathode-Cathode Separation
Δ(m)	Cathode-Anode Separation
V _C (kV)	Cathode High Voltage
P (mTorr)	Chamber Pressure

·Preliminary optimization studies for D-D were performed using the VICTER molecular code developed by G. Emmert and J. Santarius1.

VICTER Simulations

Diagnostics

Time of Flight

•The TOF diagnostic improved by Mc Evoy will be used to find the spatial distribution of fusion reactions.

•When using D-3He, , D-D fusion is inevitable and by tuning the TOF, count rates can be separated in the measured proton spectrum.

Neutron Detector

•An LND 2530 3He filled neutron detector is readily available for measurements during operation. •This detector is calibrated with a Plutonium-Bervllium neutron source.

[1] G.A. Emmert and J.F. Santarius, Phys. Plasmas 17, 013502 (2010). [2] G. Becerra, "Analysis of Fast Neutral Particles in IEC Fusion Devices," Ph.D. thesis (2014). [3] J. Khachan, D. Moore and S. Bosi, Phys. Plasmas 10, No. 3 (203).

Contact: mnavarrogonzalez22@gmail.com

*Research supported by the Grainger Foundation and the Graduate Engineering Research Scholars (GERS).

Neutral Particle

Analyzer •Charge exchange processes taking place will be studied with an NPA built by Becerra. •Neutral particles energies screened are between 5-170 keV, with increasing difficulty in measuring the energy spectrum as pressure goes down²

Spectrometer

•Depending on the fuel used in operation (and HV), a single ended or double ended Langmuir probe and a Newport Oriel LineSpec spectrometer will be used to measure the spatial distribution of of the ion energies, as demonstrated by Khachan3.

•For planar geometry, higher pressures dominate over larger Δ 's, effectively increasing the neutron rates

0.2

1 3 00F+06

2.00E+0

Conclusions

0.4 Cathode Sea

0.8 e (m)

- For fixed pressures, the neutron rates don't vary much as a function of geometry, however, at higher voltages (~35kV), these rates reach a saturation point and cease to be a function of Δ .
- At low voltages, no significant change in rates is observed once the pressure is varied.
- Neutron rates increase significantly with pressure and voltage.
- There is a limit to this pressure (observed in previous experiments) before achieving a glow discharge, ~10 mTorr.

Future Work

- Develop a high voltage feed through for the anode-cathode pair configuration.
- Adapt VICTER to run D-3He and validate results using the linear device and HOMER.

1 20E+0 1.00E+0

VICTER Simulation Results

ron Rates vs Cathode Senar

