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Future Work 
•  Develop a high voltage feed through  for the anode-cathode 

pair configuration. 
•  Adapt VICTER to run  D-3He and validate results using the 

linear device and HOMER. 

Conclusions 
•  For fixed pressures, the neutron rates don’t vary much as a 

function of geometry, however, at higher voltages (~35kV), 
these rates reach a saturation point and cease to be a 
function of Δ. 

•  At low voltages, no significant change in rates is observed 
once the pressure is varied. 

•  Neutron rates increase significantly with pressure and 
voltage.  

•  There is a limit to this pressure (observed in previous 
experiments) before achieving a glow discharge, ~10 
mTorr. 

Neutron rate per watt 
of fusion (from fuel only) 

Reaction Neutrons/s 
(MeV) 

D-T 4 × 1011 (14.1) 

D-D 9 × 1011 (2.45) 

D-3He 2 × 1010 (2.45) 

• New HV capabilities of the 
UW-IEC  lab  will  permit 
exploring  D-3He  for  the 
linear device.	


• Device  symmetry  will 
allow for improved studies 
of  charge  exchange 
processes for these fuels.	


• The  D(D,n)3He  reaction 
produces mid-energy neutrons.	


• Also  produces  higher  neutron 
rates  than  any  other  fusion 
reactions.	

→ can be used for either Fast or 
Thermal Neutron Analysis.	


• Inside  the  chamber,  two 
anode-cathode  pairs  will 
oscillate  the  ions  across  a 
target region.	


Optimization Parameters 

LC-C (m) Cathode-Cathode 
Separation 

Δ (m) Cathode-Anode 
Separation 

VC (kV) Cathode High Voltage 

P (mTorr) Chamber Pressure 

Contact: mnavarrogonzalez22@gmail.com	
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• Preliminary  optimization  studies  for  D-D were  performed 
using the VICTER molecular code developed by G. Emmert 
and J. Santarius1.	


Neutral Particle 
Analyzer	


• Charge  exchange  processes 
taking  place  will  be  studied 
with an NPA built by Becerra.	


• Neutral  particles  energies 
screened  are  between  5-170 
keV, with increasing difficulty 
in  measuring  the  energy 
spectrum  as  pressure  goes 
down2.	


Time of Flight	

• The  TOF  diagnostic 
improved by Mc Evoy will be 
used  to  find  the  spatial 
distribution  of  fusion 
reactions.	


• When  using  D-3He,  ,  D-D 
fusion  is  inevitable  and  by 
tuning  the  TOF,  count  rates 
can  be  separated  in  the 
measured proton spectrum.	


VICTER Simulations 
• Basic  assumptions  going  into 
VICTER1:	


-Backgroung D2 gas.	

-Planar, cylindrical, or spherical geometry.	

-Prescribed electrostatic potential profile	

-Ions enter from source region.	

-D+ and D2

+ ions created in the intergrid  and 
cathode  regions  by  impact  ionization,  charge 
exchange, and dissociation of fast ions colliding 
with the background D2 gas.	

-Collisionless ion motion between interactions	

-Daughter products travel at the same speed as 
parent.	


Spectrometer	

• Depending on the fuel used in 
operation  (and  HV),  a  single 
ended  or  double  ended 
Langmuir probe and a Newport 
Oriel  LineSpec  spectrometer 
will  be  used  to  measure  the 
spatial distribution of of the ion 
energies,  as  demonstrated  by 
Khachan3.	


Neutron Detector	

• An  LND  2530  3He  filled 
neutron  detector  is  readily 
available  for  measurements 
during operation.	


• This  detector  is  calibrated 
with  a  Plutonium-Beryllium 
neutron source.	


• The  plot  above  shows  the  effect  of  variation 
geometry, high voltage and Δ on the neutron rates.	


• For  planar  geometry,  higher  pressures  dominate 
over larger Δ’s, effectively increasing the neutron 
rates. 
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Main Objective 
•  Characterization the first linear IEC device at the 

University of Wisconsin-Madison. 


