Design of a Heat Exchanger for the Extraction of Lunar Solar Wind Volatiles
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Introduction and Background Results

Fusion reactors using helium-3 could produce
nuclear power without radioactive waste

"He extraction (kgyr)

Optimization (minimization of mass) of the heat pipe quantity and arrangement led
to a design that was then simulated with a computational fluid dynamic code
(Fluent). Physical regolith simulant flow tests will further refine the design.

Mining time (hriye): 90 % of lunar days

Helium-3 and other volatiles have been embedded into the lunar regolith Topnes of other volatiles could be collected per kg of *He
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* Lunar *He concentration measured in Apollo 11, 12, 14, 15, 16, & 17 plus USSR Luna 16 ) K
& 20 samples.

= Average of ~10 ppb *He concentration measured in mare regolith

#20 ppb is the predicted actual value due to agitation losses prior to thermal evolution

= Analysis, published in 1986, indicates that >10° kg of *He exists near the lunar surface

*In a reactor, | kg of *He could produce 10 MWe-y

* 10 kg could equal >1000 years of world energy supply.

*®There is 10 times more energy in the *He on the Moon than in all of today’s economically

; recoverable coal, oil, and natural gas on the Earth TAKRAT SRe 5000 bucketwheel excavator

Progress has been made toward *He Fusion ®-40 tonnes of *He would supply the entire 2014 US electricity needs. can excavate > 16,000 tonnes/hr of coal and
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Mark Il and Il lunar helium-3 miner parameters
HEAT heat pipe heat exchanger geometry

The sources of helium-3 on the Earth would not support its usc in the energy industry and mass
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Cross section of heat pipe
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phere: helium-3
atmosphere is = 4,000 tonnes
Natural Gas: potentially as much as 280 kg in reserves and speculative sources that are not being tapped
Decay of Tritium: tritium decays into helium-3 with a 12.3 year half life and 2-4 kg/yr of helium-3 is produced
from tritium in the U.S. and Canada
Increased Usage: supply depleted of helium-3 from tritium decay (down to < 10 kg in the U.S. as of 2010)
Increased Price: from (~$1,000,000/kg) to (> $30,000,000/kg)

= Available for Fusion R&D: only ~10 kg *He (200 MW-y fusion energy) is acc

is = 7x10"'? by volume. The total amount in the entire

Three FTI lunar *He miner designs have been developed
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Mark I, II, and 111 lunar helium-3 miners

Direction

The heating system minimizes thermal power use by recovering heat from

processed regolith via evaporation and condensation within heat pipes
Heat Transfer Relations

ffectiveness Relations
The Helium Extraction and Acquisition Test bed (HEAT) will be a scaled = U{'
down prototype of the full scale regolith heating and processing system ¢
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* 1:1000 scale mass flow rate (0.157 kg/s) HEAT heat pipe heat exchanger CAD model

= Corresponds to ~ 1.3 tonne/hr mining rate

= Design for <100 ym JSC-1A regolith simulant
Helium will be implanted into regolith simulant for use in the HEAT system.
The preliminary implantation system uses a dc glow discharge between parallel
plates. The simulant would fall through the discharge for implantation
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Helium Extraction and Acquisition Test bed (HEAT) Heat pipe heat exchanger component of HEAT

Mark series lunar miner regolith heating system zoom in view to individual heat pipes

85% energy recovery by using heat pipes
12.3 MW from solar collector instead of 82 MW

Heats 157 kgs of regolith from 30 °C up to 700 °C to release 85% of embedded *He
Evolves 16.7 g/hr of *He (66 kg in 3942 hours of mining)

* Working fluid — heat pipe material combinations
= Water in copper pipes: operating up to ~250 °C
= Mercury in stainless steel pipes: operating between 250- 500 °C
= Sodium and or potassium in stainless steel pipes: operating above 500 °C
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Implantation system concept (1efi) and preliminary CAD model (right)




