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e Builds on Ph.D. thesis work of Matt Carr (University of Sydney) addressing,
in part, Polywell cusp confinement without electric fields [Carl3].

e A steady-state PIC strategy previously used in “gun” codes is also applicable
to the Polywell concept.

e The algorithm is implemented in a small code called SSUBPIC.
e Test cases are presented (space-charge limited current, spherical galaxy).

e Polywells with single electron species are analyzed. Results show positively
biased coils vastly improve confinement over grounded coils.
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Motivation: Polywell

Evolution of IEC concepts leading to Polywell? *

MaGrid in Operation
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Inertial electrostatic confinement (IEC) devices based on an inner high negative
voltage metal grid lose many ions due to surface impact making energy break-even
unlikely. Elmore, Tuck, and Watson proposed replacing inner grid with a virtual
cathode of electrostatically confined electrons to avoid this [ETW59]. The
Polywell confines electrons with magnetic cusps. lons are injected inside positively
biased magnetic coils and never see a solid surface until collisional up-scattering of

energy.

*Illustrations by Mark Duncan, Askmar Publishing
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Motivation: Polywell

e Polywell concept proposed by Robert Bussard [Bus91, Kra92]. Early work by
EMC2 company funded by DARPA and later Navy.

e Electron cusp losses are a major concern, and the subject of this work.

e Single-species electron confinement with a self-produced potential hill should
closely mimic electron behavior in two-species device.

e Fusion-regime device expected to have improved electron confinement in
so-called “wiffle ball” regime where core B-field is excluded.

[ ! \: WB-7 experiment (Navy)
bl features rounded coils and
S iR a- magnetically shielded
eriment WB-4 experiment (Navy) supports.

Early HEPS exp
(DARPA)

-te S
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Simple steady-state PIC algorithm

e |dea is to launch many particles in
time-independent fields, weighting
them to the grid at every time step.

e Solve fields using particle deposition
information.

e Repeat with new set of particles in
fields produced by a previous set,
and so on

e Continue until particles produce the
same fields (p, J, etc) as prior set.

e Method can be very fast compared
to standard PIC because field solve

Steady-State Algorithm
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Scheme used by SSUBPIC and prior codes

is called much less often. The major like MICHELLE. This image is taken from a

disadvantage is no transient
information recovered.

Petillo et al [PND™'05].

e This algorithm is used in prior codes (like MICHELLE, egun) and is
implemented in our own code SSUBPIC (steady-state unstructured boundary

particle-in-cell).
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SSUBPIC code implementation W

Straight-wire approximation:
external B-field from many wire
segments. Field at X due to wire
from X; to X is just

Integration
RK4 solves EoM

dv ) )
Y _ 9(E+vxB)
; 19(%) oo
Buire(2) = E2U P (6in 9,(%) — sin 61(X)) dz
47rs(X) - =V
s(z) = LE =X x (e — Xl
==l Trilinear Interpolation: The B-field
sin 01(X) = (x—%) (%) due to the wires is saved on a

1% =Xl = x| Cartesian grid and the interpolant is

sin 0(X) = ()?f — {) ' ({2 — {1) used to evaluate RHS of ODE

1% = xlle =] system for RK4. This makes field
definitions from arbitrarily complex
coils equally inexpensive.

()_51 —)?) X ()?2 —)_<’)

12— %) x (2 =)

$(X) =
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SSUBPIC code implementation

Complex geometry

e Triangle (STL) mesh generated by
free Gmsh software, or any CAD
package

e Cartesian cells intersecting triangles
marked for constant (Dirichlet) BCs

e Gmsh can also make line meshes for
coil windings

Poisson field solution
e Standard 2nd order central

—2

(Ax) (Pjy1j.k — 2%k + Pi—1,j,k)F
—2

(By) (i jt+1,k — 29ij k + ®ij—1,k)+

—2
(Az) (i jk+1 = 2P0,k + Pijk—1) = Sij-

e Solve linear system in parallel
(OpenMP,MPI) with fast library
(Lis - Library of Iterative Solvers)

Example: Unstructured boundary definition
defining stair-steps in structured code.

Note: This geometry with heavy overlap not
used later!
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Test Cases: 1D Child-Langmuir

10000

e Code operated in 1D mode SSA%E&%
] ] 8000 | Vacuum
e Standard Child-Langmuir space =
charge limited current problem S s000 |
(O]
e d=1 m gap, Vp=10kV, electrons 8
. . L2 4000
e Theory predicts maximum current 3
and corresponding potential profile ® 000 b
4 26 v3/2
_ 4eg e Vg v_ v x\4/3 0 ! . . . . . . . . .
o=\ T2 -0 (g) 0 01 02 0.3 04 05 06 07 08 09 1

x [m]

e J started below theoretical Jo; and Potential profile for 100 cells in x-direction.
incremented up until convergence Electrons originate from cathode at left and

fails. Jc; overpredicted by 9%, 5%, fly to the right. In the space-charge limited

and 2% for 100, 200, and 400 grid case E and hence dV//dx approach zero at
the cathode to prevent further electron

points (1st order accuracy). o
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Test Cases: 2D Child-Langmuir

e Code operated in 2D mode

e Finite width (= w) patch emits
electron current.

e Finite patch emits electron current.

e Prior OOPIC and MAGIC code
solution by Luginsland et al
LLGI96].

e Later analytic solution by Lau
Lau01].

Jerop - d
Jcr W

e Again J started below theory and
walked upwards until convergence
failure. SSUBPIC fails below theory
(1600x400 mesh, At =1E — 11,
3200 e~ 's). Believe issue relates to

interpolation scheme in first cell
(see Watrous et al [WLFO01])

8 cm

V=1kV
J(x) = constant |d=1cm

"‘Jf_, V=0 FIIFFFITITEFS

w < 8 cm

Schematic of simulation.

4.5

' SSUBPIC (simple iteration) —e—

4 1 SSUBPIC (under relaxed iteration) —=— |
OOPIC/MAGIC data fit
Analytic: 1 + d/ mw
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Under-relaxed iteration refers to averaging

fields from two prior sets of simulation
particles.
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Test Cases: 2D Child-Langmuir

collecting anode

e Stable solutions at

current Y
high current can . 0
exhibit unphysical .
striations that are - -200
. 2.
relat.ed to grid —— 30, 400
spacing. = agE
e This is not good, — EE S -600
but can be watched - % [ -752.6824
for. - 53
- 00O

injecting cathode
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Test Cases: 3D spherical galaxy/cluster

e Stars also obey a collisionless Boltzmann equation (CBE)
with a single self-attracting species. SSUBPIC in 3D mode
can maintain a standard Plummer model (see Wikipedia)

equilibrium globular cluster if initialized with analytic LR
M15 - typical globular

phase-space profile. cluster
y) /J "
1stPlasme®  2nd plasma
. field field
|ﬂpUT fleld Dirichlet BC from

truncated analytic
solution

Analytic gravitational potential field given as input. Particles integrated for a set time
reproduce their input field again and again.
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Test Cases: 3D spherical galaxy/cluster

9e+06

e Error in gravitational potential 8.8+06 | j T Sy
settles to constant value after seers | o N/
certain number of iterations. N

e Will be higher for longer simulation a2e106 | |
time or longer time-step as RK4 % 5 1o

does not conserve energy.

L1 Error

78e+06 | |

e Note: Case does not have sources ez |1
and sinks as with plasma emission |
cases.

7.4e+06 L

Iteration
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Application: Low-density polywell

e Polywell test case without self-fields
(i.e. one outer iteration only).

1.0

e Coil radius: 1 m, spacing 1.5 m, | /
domain 2 m cube . i

R

e 30 kA current in each loop

0.5

gun

e Electrons sourced at 20 keV 5 cm : P oSN A

(Te = 1keV) on walls; 5 cm upward \| |E=Ewan .

lqi

Y [m]

U7
,r’\
L

e 360 straight wire segments used to X
make six round coils

1

-0.5
|

e No structures. Electrons lost when S
they exit cube domain. T 3

| | N

-1.0

e Particle confined for time 7, = 98ns
-1.0 -0.5 0.0 0.5 1.0

(only 4x better than B = 0!) X imj

. 6 .
e Comparable to bad confinement Three out of 10° example orbits shown.

reported in Matt Carr thesis

13 / 21



Application: Low-density polywell

Confinement times are strongly dependent on coil current (i.e. B) and offset
distance of guns; but are sub-microsecond for practical parameters.

220 —— 180 ———
coil spacing coil spacing
200 | 1.00m —— 160 (| 1.00m —=—
180 | 1.25m —— 125m ——
1.50m —— 140 | 150 m ——
160 k| 1.75m 1.75m ——
120 | 2.00m ——| |
. 140 ¢ _ .
0 »n 100 >
£Q 120 ¢ 5Q 3
! 80 r
T 100t : "
80 [ | 60 r
60 | ¢ 40
40 + 20 |
20 - 1 1 1 1 0 1 1 1 1
0 50 100 150 200 250 0 50 100 150 200 250
coil current [KA] coil current [kA]
(a) 5 cm gun offset (b) 10 cm gun offset
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Application: Polywell with virtual cathode (ejecting e™'s)

Similar geometry as two slides ago but self-induced fields are computed. Four
guns offset 5 cm upwards to avoid electrons passing right through. Now electron
gun current varied from 1 to 15 A. Ejecting potential hill on order of gun energy
does little to reduce confinement time!

potential (V)

-18 T T T T T T T 100
: 16 |
~-4000 i 1 80 _
s 2
=-8000 = 12} PN
3 leo E
=-12000 5 10 | =
, 3 =
E-mooo o 8y 140 5
-17126.9 43 -6 I %
o 4l . |20 8
Lowest potential —=—
v 2 Center potential —=—
Z e 0 . Mean Electron life-time —— 0
0 2 4 6 8 10 12 14 16
electron current [A]
(a) Example orbit and potential (b) Well depth and confinement time as
contours. Coils (10 cm square function of total e-gun current.
cross-section) are grounded for field
solutions.
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Application: Polywell now with charged coils (MaGrid)

e Same geometry again, now with 3 m
box (to give electrons recirculation
room) and coils charged to 20 kV to %00 ¢ “h9seslz
draw in electrons. :

de+12

e

e Now with no gun acceleration but 0000 36412

still at T.9 = 1keV E

2e+12

0.5

le+12
e 30 kA current in each loop again

Y [m]
0.0

e Electrons sourced at 20 keV
(Te = 1keV) 2 m from center; 5 cm
upward shift.

-0.5

-1.0

e Coils and supports have 10 cm
square Cross SeCtionS; 5 cm for stilts. s 10 05 0.0 0.5 10 15

15

e Confinement time increases to 7 s Electron number density and electric
due to recirculation. potential in converged solution.

e Converged fields in five iterations
(~ 10 minutes CPU time)
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Application: Polywell now with charged coils (MaGrid)

e Only 1000 particles per
iteration needed for
converged results (one orbit
shown here).

e Black dots show where
particles leave domain by
hitting triangle boundaries.

e

S

v
v

o All particles leave
simulation on supports
without magnetic shielding
(internal current carrier)
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Conclusions & Future Work

e Steady-state PIC is FAST. 6D computations are performed in 5-10 CPU
minutes with SSUBPIC.

e Charging Polywell coils to positive bias is an effective way to increase single
species confinement.

e Confinement is limited dominantly by structures without magnetic shielding.

e Numerical technique is extensible to collisional regime via Monte Carlo
algorithms (Nanbu, Takizuka-Abe, etc)

e |t may be extensible to high density two species plasmas using
quasi-neutrality condition. Will work with gyrocenter tracking.

e No transient information (e.g. anomalous transport) unless modeled as false
collision operator in which case the Reynolds-averaged kinetic equation is

being solved. Krall & Rosenthal developed such a false collision operator in a
time-dependent PIC code [KR95, KR91].
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Write your e-mail address if you'd like a copy. Thank you!
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