Fusion Product Source Regions in the IEC Fusion Reactor

5th US-Japan IEC Workshop, 9-11 Oct. 2002

R. P. Ashley, G. L. Kulcinski, J. F. Santarius, S. Krupakar Murali,
G. R. Piefer, B. B. Cipiti, J. Weidner, R. F. Radel
Fusion Technology Institute
University of Wisconsin-Madison

Summary of Activities at the UW IEC Facility

Jan. -Oct. 2002

- Designed new stalk and operated device to 156 kV
- Produced first detectable ^{94m}Tc medical isotope
- Operated helicon mode ion gun using Argon
- Investigated thermionic electron emission from cathode
- Initial study of small portable source for space applications
- Produced first plasma in water cooled chamber
- Operated device with two wire carbon grid
- Developed source region diagnostic for fusion protons

Three Sources of Fusion Reactions in an IEC Device Have Been Identified

Fusion Occurs Inside the Cathode

Fusion Occurs ThroughoutFEntire Volume of the Chamberc

Fusion Occurs on the Surface of the Cathode Grid Wires

- All three sources can be present at the same time
- Fraction depends on voltage, fuel, pressure, and past history

Three Eclipse Disks are Mounted Inside the Chamber on a Rotating Support

The Eclipse Blocks the Cathode Source Protons

Eclipsing the Cathode from the Proton Detector Reveals the Source Distribution

Lead Foil Shields the Proton Detector from the X-rays and Slows Down the Protons

Eclipsed Protons Are Either Blocked or Slowed Down

Eclipsed Data Suggests Significant Converged Core D-D Reactions

Eclipsed Data Suggests an Embedded Fusion Source for D-³He Fusion

D-D Fuel Still Produces D-³He Protons, Indicating Embedded ³He Ion Fusion

Offset Eclipse Shows Difference Between Converged Core and Embedded Fusion Source

12

Eclipsed D-³He Counts Complement the Uneclipsed Counts

13

The Volume Source Dominates D-D Fusion in the UW IEC

- The proton detector sees only 5% of the chamber volume, therefore the data represent 5% of the volume source.
- The proton detector sees 100% of the core volume, therefore the data represent 100% of the core source.
- At 100kV and 30mA the eclipse data suggest 10% of the total D-D reactions occur in the core, and 90% in the charge exchange volume source.

- The density of D-D fusion reactions in the UW IEC device is highest in the central volume inside the cathode, indicating the presence of a converged core, but the source volume still dominates D-D reactions.
- Significant D-³He fusion reactions occur uniformly distributed over the cathode grid area, indicating embedded fusion in the grid wires (see talk by Ben Cipiti).

