Expanding the D-D Voltage and Current Operating Space between 0.1 to 1 mTorr in the UW IEC Device HOMER

Matt K. Michalak,
Aaron N. Fancher, Gabriel E. Becerra*
Gerald L. Kulcinski, John F. Santarius

Presented at the 16th US-Japan IEC Workshop
1-2 October 2014 in Madison, WI

* At Phoenix Nuclear Labs

Research supported by the Greatbatch Foundation
Overview of presentation

• Motivation for pushing parameter space
• Background on UW IEC high voltage, high current operation
• Overview of progress to-date
• Results ≤ 1 mTorr (0.13 Pa) operation with comparison to 2.5 mTorr (0.33 Pa) operation
• Increased D-D fusion cross as particle energies increase

• Two ways to increase ion energy
 – Lower pressure reduces the number of collisions of ions with background gas
 – Increase cathode potential
Much of past D-D fusion with HOMER has been done between 2 and 4 mTorr (0.27 to 0.53 Pa).

The UW IEC laboratory had its highest steady state neutron production rate at 165 kV, 68 mA cathode settings and 3.1 mTorr (2.2x10^8 n/s).
The UW IEC laboratory is in the midst of a campaign to qualify a new feedthrough design (Fancher) to 300 kV and 200 mA as well as making a resistor ballast (Bonomo) capable of the same conditions.
Going to 300 kV requires a new feedthrough design

- Distance from grounded metal to the high voltage conductor increased from about 1.1 cm to 8.4 cm

Old design

New design
New feedthrough design has been conditioned to 165 kV, so far.

Most HOMER data were taken between 2 and 4 mTorr (0.27 to 0.53 Pa)

Map of HOMER High Voltage Operating Space

Parameter space yet to be explored for steady-state operation

2.2x10^8 data point
Expanded parameter space at 1 mTorr and lower in HOMER (≤ 0.13 Pa)
Neutron rates increase faster than linear for both 0.2 and 2.5 mTorr

1 mTorr = 0.13 Pa
Neutron rate still scales linearly with current at 0.2 mTorr (0.027 Pa)

D-D Neutron Rates vs Current for Different Cathode Voltages

Data Parameters:
- 20/40 cm cathode/anode diameter
- 0.2 mTorr (0.027 Pa)
- D-D fuel

- 80 kV
- 100 kV
- 110 kV
- 120 kV
- 130 kV
- 160 kV
Some data has been collected at 100 mA and 1 mTorr (0.13 Pa)
Neutron rates are similar at 1 and 2.5 mTorr but over a factor a 2 larger than at 0.2 mTorr.

1 mTorr = 0.13 Pa
Cathode/anode diameter does not affect neutron rates at 0.2 mTorr as much as at 2.5 mTorr.

- Neutron rates increase as the anode diameter increases.
- Increasing anode diameter from 30 to 40 cm (cathode diameter 20 cm) improved rates 20 to 50% at 2.5 mTorr, but only 5% at 0.2 mTorr.
• New feedthrough design has been tested to 165 kV and will be tested to 300 kV
• At 0.2 mTorr, neutron rate scales linearly with current, as it does at higher pressures
• Neutron rates at 0.2 mTorr are lower than at 1-3 mTorr
• Larger anode diameter does not increase neutron production as much at 0.2 mTorr as at 2.5 mTorr
Questions?