A "Polywell" p+11B Power Reactor Joel G. Rogers, Ph.D. rogersjg@telus.net

Aneutronic fusion is the holy grail of fusion power research. A new method of operating Polywell was developed which maintains a non-Maxwellian plasma energy distribution. The method extracts down-scattered electrons and replaces them with electrons of a unique higher energy. The confined electrons create a stable electrostatic potential well which accelerates and confines ions at the optimum fusion energy, shown in the graph below. Particle-in-cell(PIC) simulations proceeded in two steps; 1) operational parameters were varied to maximize power balance(Q) in a small-scale steady-state reactor; and 2) the small scale simulation results were scaled up to predict how big a reactor would need to be to generate net power. Q was simulated as the ratio of fusion-power-output to drive-power-input. Fusion-power was computed from simulated ion density and ion velocity. Power-input was simulated as the power required to balance non-fusing ion losses. The predicted break-even reactor size was 13m diameter. Bremsstrahlung losses were also simulated and found manageable.

Figure 5 - Typical Fusion Reaction Cross Sections

The yellow line is for the cross section of p + "B aneutronic fusion, whose peak cross section is at 560 KV. It is impossible to achieve this energy with a plasma having with a Maxwellian energy distribution since most of its electrons and ions are emitting Bremsstrahlung radiation. (This radiation is caused by the acceleration of a charged particle, such as an electron, when deflected by another charged particle, such as an atomic nucleus.)

Robert W. Bussard, "Should Google Go Nuclear", http://askmar.com/Fusion.html, November, 2006

Fig. 2 - "Polywell" Patent Pending

Fig. 3 - PIC Simulation Flowchart

Figure 2-3a A typical cycle, one time step, in a particle simulation program. The particles are numbered i = 1, 2, ..., NP; the grid indices are j, which become vectors in 2 and 3 dimensions.

The Figure(above) and caption were scanned from the textbook, Birdsall and Langdon, "Plasma Physics via Computer Simulation", McGraw Hill, New York, 1985, pg. 11.

Fig. 4 - Electrons' 2D Positions

Fig. 5 - Confining Electrostatic Potential

Fig 6 - Rider's 2005 Analysis of IEC

 $\left(\frac{\partial f}{\partial t}\right)_{col}$

Required Power to Maintain Nonequilibrium Plasma

$$P_{\text{recirc}} \equiv \int_0^\infty (dv 4 \pi v^2) \left(\frac{1}{2} m v^2\right) \left(\frac{\partial f}{\partial t}\right)_{\text{col}} \Theta[J(v)], \quad (14)$$

Idealized System for Recirculating Power to Maintain a Nonequilibrium Plasma

FIG. 2. A schematic diagram showing how to calculate the minimum recirculating power required to maintain a given non-Maxwellian isotropic velocity distribution shape. This particular example shows the recirculating power needed to sustain a distribution qualitatively similar to that in Fig.

1(b), but this general method may be extended to any isotropic but otherwise

٧d

N_{slow} N_{fast}

decelerate fast particles

 N_{fast}

extract

energy

arbitrary velocity distribution, as described in Eq. (14).
Precirc/P_{fus} ~ 5-50 for most interesting cases

accelerate slow particles

N sl<u>ow</u>

add

energy

- Direct electric converters, resonant heating, etc.
 would lose too much power during recirculation
- Need novel approaches (e.g., nonlinear waveparticle interactions) that
 - Are >95% efficient
 - Recirculate the power inside the plasma without running P_{recirc}>>P_{fus} through external hardware
 - Are resistant to instabilities

T. H. Rider, *Phys. Plasmas* 4, 1039 (1997) and Ph.D. thesis, MIT (1995)—don't overlook Appendix E

Slide-16 from Rider's 2005 talk: http://www.longwood.edu/assets/chemphys/FusionRoute.pdf

Fig. 7 - Scraping Down-Scattered e's

Fig. 8 - Ion Loss Power Calculation

Fig. 9 - Power Balance Q

- Simulated (R = 35cm) power balance: $Q(R) \equiv P_{fus} / P_{in}$ where:
 - $P_{fus} = n_p n_b < \sigma_f v > L^3 E_f eV/s$ [6]
 - $_{-}$ n_p = proton 3D density ≡ N_p / λ_D = 1.1e17/m³
 - $_{-}$ n_b = boron 3D density = n_p / Z (Proton and boron partial pressures are made equal.)
 - Z = boron charge state from ion gun = 5
 - N_p = simulated (2D) proton density = 1.1e15/m² (Fig. 10)
 - λ_D = Debye length = 7.43e2 E_e^{1/2} n_e^{-1/2} cm = 0.01m (Fig.10 & Formulary pg. 28 [7])
 - $_{-}$ E_e = maximum electron energy inside well = 400keV (Fig. 10)
 - $_{-}$ n_e = 2n_p (Plasma quasi-neutrality is an inherent property of the simulation.)
 - <> = fusion x.c. times c.m. velocity = 8e-29m² x 1e7m/s = 8e-22m³/s (Title page)
 - L = ion plasma cube dimension in meters = 0.3m (from previous slide)
 - $_{-}$ E_f = fusing ion pair energy release in eV = 8.7 MeV (Formulary pg. 44 [7])
 - P_{fus} = (1.1e17) (2.2e16) (8e-22) (0.3³) (8.7e6) eV/s = 4.5e17 eV/s
- Q(R=35cm) = P_{fus} / P_{in} = 4.5e17 / 1.1e24 = 4.1e-7 (P_{in} from Fig. 8)

[6] Glasstone and Lovberg, "Controlled Thermonuclear Reactions", van Nostrand, 1960, eq. 2.10 [7] NRL Plasma Formulary, http://wwwppd.nrl.navy.mil/nrlformulary/NRL_FORMULARY_11.pdf

Fig. 11 - Reactor Break-Even Radius

- Bussard's Scaling Formula: $Q_1/Q_2 = (R_1/R_2)^5$ [8]
- Break-Even Formula: $Q(R=35cm)/Q(R_b) = (R/R_b)^5$
 - $Q(R_b) \equiv 1$
- Solving for Break-Even Radius: $R_b = R/Q^{1/5}$
- $R_b = 0.35m/(4.1e-7)^{0.2} = 6.6m = smaller than ITER$

Fig. 12 - Bremsstrahlung Power Loss

- $P_b = 1.69e-32 n_e T_e^{\frac{1}{2}} [n_p + Z^2 n_b] L^3 W$ [Formulary p.58]
- $P_b = 1.1e-13 n_e^2 T_e^{\frac{1}{2}}[0.5 + (25)(0.1)] L^3 eV/s$
 - $n_e = electron density in cm^{-3} = 2.2e11/cm^3$ (Fig. 9)
 - T_e = electron kinetic energy in eV = 80keV (Fig 13)
 - L = electron core edge dimension in cm = 30cm (Fig. 13)
- P_b = 1.1e-13 (2.2e11)² (8e4)^{1/2}[3.0] (30)³ eV/s
- P_b = 1.3e17 eV/s
- $P_b \approx 30\% P_{fus}$ (Fig. 9)
- Bremsstrahlung losses $\approx 1/3$ fusion output power

Fig. 13 - Diagnostics Determining P_b

Fig. 14 - How to Reduce P_b Losses

- $P_b \sim T_e^{\frac{1}{2}} [1 + 25 (n_b/n_p)]$
- To reduce P_b the reactor design can change:
 - Reducing T_e to 1% E_e would reduce P_b by 4.5X. [4]
 - Boron fraction $n_b/n_p 20 \rightarrow 10\%$ would reduce P_b by ~2X.
- Reducing T_e might increase reactor size (R_b).
 - Not yet tested in simulation.
- Radiation might be reduced to 5% of fusion power.

Fig. 15 - p + ¹¹B Power; Conclusions

- New method efficiently recycles electron energy.
- Simulation predicts break-even $R_b = 6.6m$
- Additional design issues still need attention:
 - Electron power drain must be reduced.
 - Bremsstrahlung power drain must be reduced.
- A 3D simulation is needed for more realistic P_{in} .
- The future of aneutronic fusion power is bright.