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Talk Outline

» The Polywell as a hybrid device
- |IEC embedded in a magnetic field

» Magnetic field structure
- Electron motion and confinement.
- ldentify two classes of trajectories
- Compare point and line cusps

» Principle finding

- At small coil spacings, the Polywell field can be approximated as a system of
point cusps.

- This simplification allows the application of conventional point cusp theories to
confinement time calculations

» Limitations — low beta VS high beta operation
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The Polywell Concept — A hybrid device

» Uses large magnetic fields in addition to electrostatic grids to create a
virtual cathode.

» Field created by pairs of opposing current loops, each creating a cusp
about the origin.

» Magnetic fields vanish in centre due to symmetry creating a null point.
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Magnetic Mirror Effect
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Simple-mirror field configuration.
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Single Electron Trajectory Simulation

entering a point cusp magnetic null
in coil face at origin

/

magnetic moment is
well defined
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Adiabatic Condition

» The electron gyroradius changes rapidly
near the centre. Over a distance of %R it 50 =
can change from = 1cm to «. Thus the
magnetic moment J is not conserved in
this region.
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» Qutside the dashed circle, the gyroradius
changes very slowly and the magnetic
moment is a constant of motion. In this 50 | =
region the motion is completely adiabatic e )
and the mirror effect applies. 120 -80
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: Adiabatic Condition
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: Adiabatic Condition
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» A 3D isometric view of trajectory (b)

» This motion is completely adiabatic
and the electron will be confined
indefinitely.

adiabatic transition critical flux surface ’ These trajecto.ries are not suitable
region for IEC operation
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» Despite MHD stability — rapid plasma loss
from the line cusp region. Plugging
mechanisms such as RF power and

repeller plates have failed to make it work.

» Sadowski (1970) developed a spherical
multipole configuration with 30 point
cusps [3].

» Central idea is that a system of point
cusps will be much more efficient than
any system with broad line cusps.

» Observed a confinement time 2.5 times
longer than a spindle cusp.

» NOTE: Sadowski did not do IEC, only
neutral plasma confinement.

Point and Line Cusps

Spindle Cusp Device

Point Cusp

‘—

Line Cusp

North Poles

Sadowski's dodecahedron [3]
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: Point and Line Cusps

B field as a function of coil spacing
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» At small spacings (s/r — 1) B face is extremely weak. But at large
spacings (s/r — 2) B corner is very weak.

» The ideal spacing is approx 1.2 where Bface = Bcorner and Bedge is an
order of magnitude larger than both, effectively plugging the line cusp.
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Point and Line Cusps

Sign and relative magnitude of

radial B field
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B field as a function of coil spacing
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» At small spacings (s/r — 1) B face is extremely weak. But at large
spacings (s/r — 2) B corner is very weak.

» The ideal spacing is approx 1.2 where Bface = Bcorner and Bedge is an
order of magnitude larger than both, effectively plugging the line cusp.
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» Point cusp escape trajectory:

» Line cusp escape trajectory:
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Approximate Loss Rate

» Fraction of electrons inside the loss cone of a point cusp is well known [2].

» Bussard argued that that if the loss cones are not overlapping, the
conventional equation only needs to be modified by a factor n, where n is

the number of point cusps [4]. We have shown that n = 14 for a cubic
polywell.

» The loss fraction can be interpreted as the probability of escape after each
successive random scattering event inside the magnetic null region.
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Confinement Time
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» The distribution of confinement times for 10,000 electrons [9].

» Simulation 1o = 0.129us vs theory 7o =0.163us
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Confinement Time
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» The distribution of confinement times for 10,000 electrons [9].
» Simulation 1o = 0.129us vs theory 7o =0.163us

If o =0.15us, then a litre of 100eV electrons at a density of 10" m= requires
approximately 400kW of input power to replace energy lost by electrons.
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Limitations and further questions

> Model only applies to low beta

» Other effects that need to be considered:
- Need to establish how high beta changes the flux surfaces — effective loss area
- Low beta confinement times appear too short for efficient IEC operation.

- Electrostatic plugging of point cusps during high beta may improve confinement
times.

- Modification to include radial electric fields created by virtual cathode

- Are completely adiabatic orbits unfavorable? How do they effect the potential
well?

18
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